Target Classification Aided Variable-Structure Multiple-Model Algorithm
نویسندگان
چکیده
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملExpected-mode Augmentation Algorithms for Variable-structure Multiple-model Estimation
This paper presents a new class of variable-structure algorithms, referred to as expected-mode augmentation (EMA), for multiple-model estimation. In this approach, the original model set is augmented by a variable set of models intended to match the expected value of the unknown true mode. These models are generated adaptively in real time as (globally or locally) probabilistically weighted sum...
متن کاملLatent Variable Perceptron Algorithm for Structured Classification
We propose a perceptron-style algorithm for fast discriminative training of structured latent variable model, and analyzed its convergence properties. Our method extends the perceptron algorithm for the learning task with latent dependencies, which may not be captured by traditional models. It relies on Viterbi decoding over latent variables, combined with simple additive updates. Compared to e...
متن کاملFeature-Aided Multiple Target Tracking in the Image Plane
Vast quantities of EO and IR data are collected on airborne platforms (manned and unmanned) and terrestrial platforms (including fixed installations, e.g., at street intersections), and can be exploited to aid in the global war on terrorism. However, intelligent preprocessing is required to enable operator efficiency and to provide commanders with actionable target information. To this end, we ...
متن کاملFuzzy logic-based multi-factor aided multiple-model filter for general aviation target tracking
A fuzzy logic-based multi-factor aided multiple-model filter (FLMAMMF) for General aviation (GA) maneuvering target tracking (MTT) is presented. The target category and meteorological information are introduced into the interacting multiple model (IMM) filter to perform GA target tracking. Fuzzy logic inference is employed in the proposed algorithm to reflect the complicated relationship betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3015880